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AB S TRACT

We excite an epicyclic motion, the amplitude of which depends on the vertical position, z, in

a simulation of a turbulent accretion disc. An epicyclic motion of this kind may be caused by

a warping of the disc. By studying how the epicyclic motion decays, we can obtain

information about the interaction between the warp and the disc turbulence. A high-

amplitude epicyclic motion decays first by exciting inertial waves through a parametric

instability, but its subsequent exponential damping may be reproduced by a turbulent

viscosity. We estimate the effective viscosity parameter, av, pertaining to such a vertical

shear. We also gain new information on the properties of the disc turbulence in general, and

measure the usual viscosity parameter, ah, pertaining to a horizontal (Keplerian) shear. We

find that, as is often assumed in theoretical studies, av is approximately equal to ah and both

are much less than unity, for the field strengths achieved in our local box calculations of

turbulence. In view of the smallness (,0.01) of av and ah we conclude that for b �
pgas=pmag , 10 the time-scale for diffusion or damping of a warp is much shorter than the

usual viscous time-scale. Finally, we review the astrophysical implications.

Key words: accretion, accretion discs ± instabilities ± MHD ± turbulence.

1 INTRODUCTION

Warped accretion discs appear in many astrophysical systems. A

well-known case is the X-ray binary Her X-1, in which a

precessing warped disc is understood to be periodically covering

our line of sight to the neutron star, resulting in a 35-d periodicity

in the X-ray emission (Tananbaum et al. 1972; Katz 1973; Roberts

1974). A similar phenomenon is believed to occur in a number of

other X-ray binaries. In recent years the active galaxy NGC 4258

has received much attention as a warp in the accretion disc has

been made visible by a maser source (Miyoshi et al. 1995).

A warp may appear in an accretion disc in response to an

external perturber such as a binary companion, but it is also

possible that the disc may produce a warp on its own. Pringle

(1996) showed that the radiation pressure from the central

radiation source may produce a warp in the outer disc. In a

related mechanism, the irradiation can drive an outflow from the

disc. The force of the wind may then in a similar way excite a

warp in the disc (Schandl & Meyer 1994).

Locally, one of the effects of a warp is to induce an epicyclic

motion the amplitude of which varies linearly with distance from

the mid-plane of the disc. This motion is driven near resonance in

a Keplerian disc, and its amplitude and phase are critical in

determining the evolution of the warp (Papaloizou & Pringle

1983; Papaloizou & Lin 1995). Depending on the strength of the

dissipative process, the warp may either behave as a propagating

bending wave or evolve diffusively. In the latter case the amplitude

of the epicyclic motion is determined by the dissipative process.

A (possibly) related dissipative process is responsible for

driving the inflow and heating the disc by transporting angular

momentum outwards. From a theoretical point of view this

transport has been described in terms of a viscosity (Shakura &

Sunyaev 1973), but the source of the viscosity remained uncertain

for a long time. It was clear from the beginning that molecular
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viscosity would be insufficient, so one appealed to some form of

anomalous viscosity presumably produced by turbulence in the

accretion disc. However, the cause of the turbulence could not be

found as the Keplerian rotation is hydrodynamically stable

according to Rayleigh's criterion.

Eventually Balbus & Hawley (1991) discovered that the

Keplerian flow becomes unstable in the presence of a magnetic

field. This magnetic shearing instability had already been

described by Velikhov (1959) and Chandrasekhar (1960), but it

had not been thought applicable in the context of accretion discs

before. Several numerical simulations (e.g. Hawley, Gammie &

Balbus 1995; Matsumoto & Tajima 1995; Brandenburg et al.

1995; Stone et al. 1996) have demonstrated how this instability

generates turbulence in a Keplerian shear flow.

The most important result of these simulations has been to

demonstrate that the Maxwell and Reynolds stresses that the

turbulence generates will transport angular momentum outwards,

thus driving the accretion. The energy source of the turbulence is

the Keplerian shear flow, from which the magnetic field taps

energy. This energy is then partially dissipated as a result of

Ohmic diffusion, but an equal amount of energy is spent on

exciting the turbulent motions. The turbulent motions on the other

hand give rise to a dynamo, which sustains the magnetic field

required by the Balbus±Hawley instability (Brandenburg et al.

1995; Hawley, Gammie & Balbus 1996).

In general the energy of the magnetic field is an order of

magnitude larger than the energy of the turbulent velocities, but

almost all of the magnetic energy is associated with the toroidal

magnetic field, and the poloidal magnetic field components are

comparable to the turbulent velocities.

So far none of the simulations has addressed the question of

how the turbulence responds to external perturbations or systematic

motions that are more complex than a Keplerian shear flow. The

purpose of this paper is to begin such an investigation by studying

how the turbulence interacts with an imposed shearing epicyclic

motion of the type found in a warped disc.

We start this paper by describing the shearing-box approxima-

tion of magnetohydrodynamics and summarizing the properties of

the epicyclic motion in a shearing box in Section 2. Section 3 is

then a description of our simulations of an epicyclic motion. The

results of the simulations are then described in Section 4 and

briefly summarized in Section 5.

2 MATHEMATICAL FORMULATION

2.1 The local structure of a steady disc

For the intentions of this paper it is sufficient to use a simple

model of the vertical structure of a geometrically thin accretion

disc. The disc is initially in hydrostatic equilibrium,

­p

­z
� rgz; �1�

where p is the pressure, r the density, and gz � 2GMz=R3
0 the

vertical component of the gravity with G the gravitational

constant, M the mass of the accreting star, and R0 the radial

distance from the star. For simplicity we assume that the disc

material is initially isothermal, and is a perfect gas, so that p �
c2sr; where cs is the isothermal sound speed, which is initially

constant. The density distribution is then

r � r0e
2z2=H2

; �2�

where the Gaussian scaleheight, H, is given by

H2 � 2c2sR
3
0

GM
: �3�

2.2 Epicyclic motion in the shearing box approximation

In the shearing box approximation a small part of the accretion

disc is represented by a Cartesian box which is rotating at the

Keplerian angular velocity V0 �
���������������

GM=R3
0

p
: The box uses the

coordinates (x,y,z) for the radial, azimuthal and vertical directions,

respectively. The Keplerian shear flow within the box is u�0�y �
2

3
2
V0x; and we solve for the deviations from the shear flow

exclusively. The magnetohydrodynamic (MHD) equations may

then be written

Dr

D t
� 27 ´ �ru�; �4�

Du

D t
� 2�u ´ 7�u� g� f �u�2 1

r
7p� 1

r
J � B� 1

r
7 ´ �2nrS�;

�5�
DB

D t
� 7 � �u � B�2 7 � hm0J; �6�

De

D t
� 2�u ´ 7�e2 p

r
7 ´ u� 1

r
7 ´ �xr7e� � 2nS2 � hm0

r
J2 � Q;

�7�
where D=D t � ­=­t � u�0�y ­=­y includes the advection by the

shear flow, r is the density, u the deviation from the

Keplerian shear flow, p the pressure, f �u� � V0�2uy;2 1
2
ux; 0�

the inertial force, B the magnetic field, J � 7 � B=m0 the

current, m0 the permeability of free space, n the viscosity,

Sij � 1
2

ui;j � uj;i 2
2
3
dijuk;k

ÿ �

the trace-free rate of strain tensor, h

the magnetic diffusivity, e the internal energy, x the thermal

conductivity, and Q is a cooling function. The radial component of

the gravity cancels against the centrifugal force, and the remaining

vertical component is g � 2V2
0zẑ: We adopt the equation of state

for an ideal gas, p � �g2 1�re:
When the horizontal components of the momentum equation (5)

are averaged over horizontal layers (an operation denoted by angle

brackets), we obtain

­

­t
kruxl � 2V0kruyl2

­

­z
kruxuzl�

­

­z

BxBz

m0

� �

; �8�

­

­t
kruyl � 2

1

2
V0kruxl2

­

­z
kruyuzl�

­

­z

ByBz

m0

� �

: �9�

The explicit viscosity, which is very small, has been neglected

here. These equations contain vertical derivatives of components

of the turbulent Reynolds and Maxwell stress tensors, distinct

from the xy components that drive the accretion.

We initially neglect the turbulent stresses and obtain the

solution

kruxl � r0�z� ~u0�z� cos�V0t�; �10�
kruyl � 2

1
2
r0�z� ~u0�z� sin�V0t�; �11�

which describes an epicyclic motion. Here r0(z) is the initial

density profile. The initial velocity amplitude uÄ0 is an arbitrary

function of z. For the simulations in this paper we will take

~u0�z� / sin�kz�; where k � p=Lz; and 2
1
2
Lz # z # 1

2
Lz is the

vertical extent of our shearing box. This velocity profile is
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compatible with the stress-free boundary conditions that we

employ in our numerical simulations, and gives a fair representa-

tion of a linear profile close to the mid-plane of the disc.

The kinetic energy of the epicyclic motion is not conserved, but

the square of the epicyclic momentum

E�z; t� � 1
2
kruxl

2 � 2kruyl
2; �12�

is conserved in the absence of turbulent stresses. By multiplying

equation (8) by kruxl, and equation (9) by 4kruyl we obtain

­E

­t
� Fu � FB; �13�

where

Fu � 2kruxl
­

­z
kruxuzl2 4kruyl

­

­z
kruyuzl �14�

and

FB � kruxl
­

­z

BxBz

m0

� �

� 4kruyl
­

­z

ByBz

m0

� �

�15�

represent the `rates of working' of the Reynolds and Maxwell

stresses, respectively, on the epicyclic oscillator. We may expect

that both Fu and FB are negative, but by measuring them in the

simulation we may determine the relative importance of the

Reynolds and Maxwell stresses in damping the epicyclic motion.

We will also refer to an epicyclic velocity amplitude

~u �
���������������������������

kuxl
2 � 4kuyl

2
q

: �16�

2.3 Theoretical expectations

The detailed fluid dynamics of a warped accretion disc has been

discussed by, e.g., Papaloizou & Pringle (1983), Papaloizou & Lin

(1995) and Ogilvie (1999). The dominant motion is circular

Keplerian motion, but the orbital plane varies continuously with

radius r and time t. This may conveniently be described by the tilt

vector `(r, t), which is a unit vector parallel to the local angular

momentum of the disc annulus at radius r. A dimensionless

measure of the amplitude of the warp is then A � j­`=­ ln rj:
In the absence of a detailed understanding of the turbulent

stresses in an accretion disc, it is invariably assumed that the

turbulence acts as an isotropic effective viscosity in the sense of

the Navier±Stokes equation. In such an approach the dynamic

viscosity is often parametrized as

m � ap=V0; �17�
where a is a dimensionless parameter (Shakura & Sunyaev 1973).

Although it is now possible to simulate the local turbulence in an

accretion disc, this form of phenomenological description of the

turbulent stress is still valuable as it is not yet possible to study

simultaneously both the small-scale turbulence and the global

dynamics of the accretion disc in a numerical simulation. One of

the goals of this paper is to test the validity of this hypothesis by

comparing the predictions of the viscous model, as summarized

below, with the results of the numerical model. We generalize the

viscosity prescription by allowing, in a simple way, for the

possibility that the effective viscosity is anisotropic (cf. Terquem

1998). The parameter ah pertaining to `horizontal' shear (i.e.

horizontal±horizontal components of the rate-of-strain tensor,

such as the Keplerian shear) may be different from the parameter

av pertaining to `vertical' shear (i.e. horizontal±vertical

components of the rate-of-strain tensor, such as the shearing

epicyclic motion).

Owing to the pressure stratification, resulting from the vertical

hydrostatic equilibrium, in a warped disc there are strong

horizontal pressure gradients (Fig. 1) that generate horizontal

accelerations of order AV2
0z; which oscillate at the local orbital

frequency, as viewed in a frame corotating with the fluid. In a

Keplerian disc the frequency of the horizontal pressure gradients

coincides with the natural frequency of the resulting epicyclic

motion, and a resonance occurs. The amplitude of the resulting

epicyclic motion depends on the amount of dissipation present. At

low viscosities, av & H=r; the amplitude is limited by the

coupling of the epicyclic motion to the vertical motion in a

propagating bending wave, which transports energy away. At

higher viscosities the amplitude is limited by a balance between

the forcing and the viscous dissipation, and the warp evolves

diffusively (Papaloizou & Pringle 1983). When H=r & av ! 1 the

amplitude of the epicyclic motion is

ux / uy /
AV0z

av

: �18�

The resulting hydrodynamic stresses ruxuz and ruyuz (overbars

denote averages over the orbital time-scale), which tend to

flatten out the disc, are also proportional to a21
v A and therefore

dominate over the stresses /avA caused by small-scale turbulent

motions, which would have the same effect. It is for this reason

that the time-scale for flattening a warped disc is anomalously

short compared to the usual viscous time-scale, by a factor of

approximately 2ahav. (For more details, see Papaloizou & Pringle

1983 and Ogilvie 1999. In these papers it was assumed that ah �
av:�
We aim to measure both ah and av in the simulations. The first

may be obtained through the relation

ruxuy 2
BxBy

m0

� �

V

� 3

2
ahkplV; �19�

which follows by identifying the total turbulent xy stress with the

effective viscous xy stress resulting from the viscosity (17) acting

on the Keplerian shear (note that the definition of ah differs from

that of aSS in Brandenburg et al. 1995 by a factor
���

2
p

�: Here the

average is over the entire computational volume.

The coefficient av may be obtained by measuring the

damping time of the epicyclic motion. In the shearing-box

approximation, the horizontal components of the Navier±Stokes

equation for a free epicyclic motion decaying under the action of

Figure 1. Owing to the stratification there appear horizontal pressure

gradients in the warped disc. These gradients excite the epicyclic motion

(arrows indicate forces, not velocities).
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viscosity are

­ux

­t
� 2V0uy �

1

r

­

­z

avp

V0

­ux

­z

� �

; �20�

­uy

­t
� 2

1

2
V0ux �

1

r

­

­z

avp

V0

­uy

­z

� �

: �21�

Under the assumptions that av and ­zu are independent of z and

that the disc is vertically in hydrostatic equilibrium, these

equations have the exact solution

ux � CV0ze
2t=t cos�V0t�; �22�

uy � 2 1
2
CV0ze

2t=t sin�V0t�: �23�

where C is a dimensionless constant and

t � 1

avV0

�24�

is the damping time. Admittedly it is already believed that ah is

not independent of z (Brandenburg et al. 1996) and therefore av

may not be either. Also, our velocity profile is not exactly

proportional to z. However, it is in fact the damping time that

matters for the application to a warped disc, and the solution that

we describe above is in a sense the fundamental mode of the

epicyclic shear flow in a warped disc.

It might be argued that the decaying epicyclic motion is

fundamentally impossible in the presence of MHD turbulence.

After all, the magnetorotational instability works because a

magnetic coupling between two fluid elements executing an

epicyclic motion allows an exchange of angular momentum that

destabilizes the motion. However, we argue that the epicyclic

motion must be re-stabilized in the non-linear turbulent state.

Otherwise epicyclic motions, which are continuously and

randomly forced by the turbulence, would grow indefinitely

(Balbus & Hawley 1998). In fact they last only a few orbits, as

discussed in Section 3.2 (below). Moreover, our numerical results

demonstrate without any doubt that the shearing epicyclic motion

is possible, and does decay in the presence of MHD turbulence.

A further theoretical expectation is as follows. In an inviscid

disc, the epicyclic motion can decay by exciting inertial waves

through a parametric instability (Gammie, Goodman & Ogilvie

2000). In the optimal case, the signature of these waves is motion

at 308 to the vertical, while the wave vector is inclined at 608 to the

vertical. The characteristic local growth rate of the instability is

g � 3
���

3
p

16

­ux

­z

�

�

�

�

�

�

�

�

: �25�

This instability can lead to a rapid damping of a warp, but may be

somewhat delicate as it relies on properties of the inertial-wave

spectrum. It is important to determine whether it occurs in the

presence of MHD turbulence.

3 NUMERICAL SIMULATIONS

3.1 Computational method

We use the code by Nordlund & Stein (1990) with the

modifications that were described by Brandenburg et al. (1995).

The code solves the MHD equations for ln r , u, e and the vector

potential A, which gives the magnetic field via B � 7 � A: For
the (radial) azimuthal boundaries we use (sliding) periodic

boundary conditions. The vertical boundaries are assumed to be

impenetrable and stress-free. Unlike our earlier studies, we now

adopt perfectly conducting vertical boundary conditions for the

magnetic field. Thus we have

­ux

­z
� ­uy

­z
� uz � 0; �26�

and

­Bx

­z
� ­By

­z
� Bz � 0: �27�

We choose units such that H � GM � 1: Density is normalized

so that initially r � 1 at the mid-plane, and we measure the

magnetic field strength in velocity units, which allows us to set

m0 � 1: The disc may be considered to be thin by the assumptions

of our model, and the results will thus not depend on the value of

R0. We choose to set R0 � 10 in our units, which gives the orbital

period T0 � 2p=V0 � 199; and the mean internal energy

e � 7:4 � 1024. The size of the box is Lx : Ly : Lz � 1 : 2p : 4;
where x and z vary between ^

1
2
Lx and ^

1
2
Lz; respectively, and y

goes from 0 to Ly. The number of grid points is Nx � Ny � Nz: To
stop the box from heating up during the simulation we introduce

the cooling function

Q � 2scool�e2 e0�; �28�

where s cool is the cooling rate, which typically corresponds to a

time-scale of 1.5 orbital periods, and e0 is the internal energy of an

isothermal disc.

Although the Balbus±Hawley instability appears readily in a

numerical simulation, experience has taught us that the initial

conditions must be chosen carefully in order for the instability to

develop into sustained turbulence, unless the initial magnetic field

has a net flux. In particular, the initial field strength should be

chosen such that the AlfveÂn speed is close to the sound speed.

Otherwise the field becomes too weak before the dynamo effect

sets in. Experience has shown that after about 50 orbital periods

the simulations are independent of the details of the initial

conditions, which is typical of turbulence in general. To save time

we started the simulations in this paper from a snapshot of a

previous simulation (Brandenburg 1999). The origin of this

snapshot goes back to the simulations by Brandenburg et al.

(1995). In those simulations we started from a magnetic field of

the form ẑB0 sin�2px=Lx� (at that time we employed boundary

conditions that constrained the magnetic field to be vertical on the

upper and lower boundaries). B0 was chosen such that b �
2m0p=B

2
0 � 100 on average in the shearing box. A snapshot from

an evolved stage of one of these simulations was later relaxed for

about 55 orbital periods to fit the perfectly conducting upper and

lower boundaries of Brandenburg (1999). For the purposes of this

paper a snapshot from the new simulation was modified in the

following way. For every horizontal layer in the snapshot we

subtract the mean horizontal velocity and then add a net radial

flow of the form

ux � u0 sin
pz

Lz

� �

: �29�

Two things that should be kept in mind here are that the previous

simulations have been run long enough that the current snapshot

has lost its memory of its original initial conditions, and that in

spite of all the modifications there is still no net magnetic flux in

the shearing box. The number of grid points and u0 for the

different runs are given in Table 1. u0 should be compared to the
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adiabatic sound speed which is 0.029. We include one run, Run 0,

in which we do not excite an epicyclic motion, as a reference.

3.2 Results

We start by looking at Run 0. In this case we have not modified

the velocity field, so that Run 0 represents the typical properties of

the turbulence. The turbulence is fully developed at the beginning

of our study, meaning that the shearing box does not remember its

initial state any longer. We plot the vertical distributions of the

magnetic and turbulent kinetic energies in Fig. 2. The kinetic

energy is independent of the vertical coordinate z while the

magnetic energy has a minimum close to the mid-plane. It is a

typical property of all our simulations that the magnetic energy is

up to an order of magnitude larger than the turbulent kinetic

energy, but the magnetic energy is still an order of magnitude

smaller than the internal energy, the mean density of which as

stated above is 7:4 � 1024: A property of both the magnetic and

turbulent kinetic energies is that they are completely dominated by

the contributions from the azimuthal components of the magnetic

field and turbulent velocity, respectively. The other components of

the turbulent velocity and magnetic field make about equal

contributions to the energy density far from the mid-plane of the

disc.

The turbulence generates epicyclic motions with amplitudes

,0.004 lasting for a couple of orbital periods (Fig. 3). The

epicyclic velocity amplitude uÄ (see equation 16) is peaked towards

the surfaces of the accretion disc (cf. Fig. 3, bottom). Overall these

motions complicate the analysis of the rest of our numerical

simulations, and force us to excite motions with amplitudes

significantly larger than those of the motions produced by the

turbulence.

Fig. 4 shows the mean horizontal motion of Run 1b. At the start

of the simulation we added a radial velocity of amplitude 0.011.

Far from the mid-plane, the imposed epicyclic motion is

comparable to that generated by the turbulence, and it becomes

virtually impossible to identify a phase of exponential decay.

Closer to the mid-plane, the imposed epicyclic motion is initially

unaffected by the turbulence. After seven or eight orbital periods a

damping sets in, but the net damping before the turbulence starts

to reinforce the epicyclic motion is less than a factor of two. By

looking at the volume average of the square of the epicyclic

momentum, kElV, (Fig. 5) we find a clear trend. The epicyclic

motion is obviously damped, and by fitting an exponential we

obtain an e-folding time-scale of 17.8 orbital periods for kElV,

corresponding to a time-scale of 35.6 orbital periods for the

momentum, but the damping is not described accurately by an

exponential. Initially the damping is much slower than the fitted

exponential, while at the end it is faster.

The analysis becomes more straightforward in Run 3, where we

excite a motion of amplitude 0.095. There is then a sufficient

Table 1. Specification of
numerical simulations: the num-
ber of grid points are given by
Nx � Ny � Nz; and the ampli-
tude of the initial velocity
perturbation is u0. Note that all
Runs except Run 4 starts from a
snapshot of a previous simula-
tion of turbulence in an accre-
tion disc. Run 4 starts from a
state with no turbulent motions.

Run Nx � Ny � Nz u0

0 31 � 63 � 63 0.0
1 31 � 63 � 63 0.011
1b 63 � 127 � 127 0.011
2 31 � 63 � 63 0.095
3 63 � 127 � 127 0.095
4 63 � 127 � 127 0.095

Figure 2. Top: The magnetic (solid line) and kinetic (dashed line)

turbulent energies as a function of z at the beginning of Run 0. The

energies are completely dominated by the contributions from the y-

components of the magnetic field, and velocity, respectively. Bottom: B2
x=2

(dashed line), B2
z=2 (dot-dashed line), ru

2
x=2 (triple-dotted dashed line) and

ru2z=2 (dotted line) as a function of z.

Figure 3. Top: kuxl (solid line) and 2kuyl (dashed line) as a function of time

at z � 1:55 for Run 0. The plot shows that epicyclic motions of amplitude

,0.005 lasting for a couple of orbits appear spontaneously in the disc.

Bottom: uÄ as a function of z at t � 66:7 orbital periods.
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dynamic range between the epicyclic and turbulent motions. We

show the vertical variation of uÄ at four different times in Fig. 6,

and plot it as a function of time at three different heights; z �
1:52; z � 0:89 and z � 0:44; in Fig. 7. Fig. 6 shows that the

damping sets in first at the surfaces, while for jzj , 1 there is

essentially no damping during the first two orbital periods (Fig. 7).

There is then a brief period of rapid damping between t � 58 T0

and t � 60T0 throughout the box, especially for small |z| where uÄ

may drop by a factor of 2. This is followed by a period of

exponential decay, but after t � 75 T0 it becomes difficult to

follow the epicyclic motion, as the influence of the random

turbulence on uÄ becomes significant, in particular close to the mid-

plane, where uÄ is small in any case. We estimate the damping

time, t � �d ln ~u=dt�21 by fitting exponentials to uÄ in the interval

60T0 , t , 75T0: Averaged over the box we get t � 25^ 8T0;
which corresponds to av � 0:006^ 0:002 according to equation

(24).

We may determine the influence of the Maxwell and Reynolds

stresses on the shear flow by plotting Fu and FB as functions of

time (Fig. 8). The sharp peak in Fu coincides with the parametric

decay of the epicyclic motion to inertial waves (see Section 4.1,

below). As this is a hydrodynamic process it is not surprising that

Fu . FB; but it was not expected that Fu would remain the

dominating effect at later times, since at the same time it is the

Maxwell stress that is driving the radial accretion flow.

The accretion itself is driven by the kruxuy 2 BxByl stresses. We

plot the moving time averages of the vertical average of the

accretion-driving stress of Run 3 in Fig. 9, and as a comparison

that of Run 0 in Fig. 10. In the beginning of Run 3 the Reynolds

stress is modulated on a time-scale of half the orbital period. This

modulation is an artefact of the damping of the epicyclic motion

and dies out with time. The Maxwell stress becomes significantly

stronger than the Reynolds stress once the epicyclic motion has

vanished. Later the stresses vary in phase with each other, as they

do all the time in Run 0. The main difference between Run 0 and

the end of Run 3 is that the stresses are 2±3 times larger in Run 3.

We calculate ah for Run 3 by dividing the stresses by 3
2
kplV

(Fig. 11). One should take note that the simulations in this paper

Figure 4. kuxl (solid line) and 2kuyl (dashed line) as a function of time at

z � 1:17 (top) and z � 20:25 (bottom) of Run 1b. The damping time-scale

in the lower plot during the interval 63 to 68 orbital periods is 15.5 orbital

periods.

Figure 5. kElV, the square of the epicyclic momentum, as a function of

time for Run 1b. The dashed line is a fit with an exponential to kElV. The e-

folding time-scale of the exponential is 17.8 orbital periods.

Figure 6. uÄ as a function of z at t � 55:8T0 (solid line), 57.1T0 (dashed

line), 58.4T0 (dotted line), and 60.9T0 (dot-dashed line) for Run 3.

Figure 7. The amplitude of the epicyclic motion in Run 3, uÄ , as a function

of t on three horizontal planes: z � 1:52 (solid line), z � 0:89 (dashed line)

and z � 0:44 (dot-dashed line). The straight lines are exponential functions
that have been fitted for the interval 60 T0 , t , 75 T0: The e-folding

time-scales of the exponentials starting from the top are 19.4T0, 22.1T0
and 20.2T0, respectively. The epicyclic motion was added to the box at

t � 55:7 T0:
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are too short to derive ah with high statistical significance (cf.

Brandenburg et al. 1995), but our results do show that ah varies in

phase with the stress. In other words, the pressure variations are

smaller (the pressure increases by 50 per cent during the course of

the simulation) than the stress variations, which is not what we

expect from equation (19). The lack of a correlation between the

stress and the pressure is even more evident in Run 0, in which the

pressure never varies by more than 5 per cent.

In our previous work (Brandenburg et al. 1995) we found that

the toroidal magnetic flux reversed its direction about every 30

orbital periods. With the perfect conductor boundary conditions

that we have assumed in this paper, such field reversals are not

allowed, since the boundary conditions conserve the toroidal

magnetic flux (e.g. Brandenburg 1999). In all of our simulations

we made sure that the toroidal magnetic flux was 0. However, the

azimuthal magnetic field organized itself in such a way that it is

largely antisymmetric with respect to the mid-plane. That is,

considering separately the upper and lower halves of the box, we

may still find significant toroidal fluxes, but with opposite

directions. These fluxes may still be reversed by the turbulent

dynamo as we found in Run 3 (Fig. 12).

3.3 Dependence on u0 and on the resolution

There is some evidence from comparing Runs 1b and 3 that the

damping time-scale decreases as u0 is increased, but it is more

difficult to study the damping of the epicyclic motion for a smaller

u0, as the turbulence may excite epicyclic motions on its own. The

randomly excited motions swamp the epicyclic motion that we are

studying. The quantitative results from Runs 1 and 1b are

therefore more uncertain. In other respects the turbulent stresses of

Runs 1 and 1b are more similar to those of Run 0 than to those of

Run 3.

On the other hand there are significant differences between

Runs 2 and 3, which differ only in terms of the grid resolution.

Figure 8. 2kFulV (solid line) and 2kFBlV (dashed line) as a function of

time for Run 3.

Figure 9. 2kBxBylV (solid line) and kruxuylV of Run 3.

Figure 10. 2kBxBylV (solid line) and kruxuylV of Run 0.

Figure 11. ah is calculated by dividing2kBxBylV (solid line) and kruxuylV
(dashed line) of Run 3 with 3

2
kplV:

Figure 12. By averaged over the upper half (solid line) and lower half

(dotted line) of the box of Run 3.
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The magnetic field decays rapidly in Run 2, and only the toroidal

field recovers towards the end of the simulation. In the absence of

a poloidal magnetic field there is no magnetic stress, and therefore

the disc cannot extract energy from the shear flow. Consequently

there is no turbulent heating in Run 2, and the disc settles down to

an isothermal state. Apparently the turbulence is killed by the

numerical diffusion in Run 2. This demonstrates that the minimal

resolution which is required in the simulation depends on the

amplitude uÄ0. A simulation with an imposed velocity uÄ0 with an

amplitude significantly larger than that of the turbulence requires

a finer resolution than a simulation of undisturbed turbulence. Run

2 failed because the imposed velocity field in combination with

the limited resolution generated a numerical diffusion large

enough to kill the turbulence. This was not a problem in Run 1,

where the amplitude uÄ0 is much smaller.

To check the influence of numerical diffusion on Run 3 we

imposed the same velocity profile as in Run 3 on a shearing box

without any turbulence (Run 4). We plot the evolution of uÄ in

Fig. 13. We fitted exponential functions to uÄ for the interval 0±5.5

orbital periods. The shortest e-folding time we obtained over this

interval was 640 orbital periods for z � 1:52: Closer to the mid-

plane, the e-folding time-scale was several thousand orbital

periods. These numbers are indicative of the effect of numerical

diffusion in the simulations. The strong damping at t � 6 orbital

periods is not the result of numerical diffusion, rather it is caused

by a physical parametric instability (see Section 4.1, below) that,

in this case, has been triggered by numerical noise.

4 DISCUSS ION

For the purposes of the following discussion we now summarize

our main results.

(1) In Runs 3 and 4 the initial damping of the epicyclic motion

is caused by its parametric decay to inertial waves (see Section

4.1, below).

(2) Apart from this, the epicyclic motion experiences

approximately exponential damping through interaction with the

turbulence. The e-folding time-scale is about 25 orbital periods,

which may be interpreted as av � 0:006:

(3) ah, which describes the accretion-driving stress kruxuy 2

BxByl is of comparable size.

4.1 Parametric decay to inertial waves

Gammie et al. (2000) predicted the occurrence of a parametric

instability in epicyclic shear flows. The shear flow should excite

pairs of inertial waves that propagate at roughly a 308 angle to the

vertical, and involve vertical as well as horizontal motions. To

elucidate the dynamics of the parametric instability we make use

of a two-dimensional hydrodynamic simulation of an epicyclic

shear flow. Our two-dimensional xz plane has the same extension

Figure 13. The amplitude of the epicyclic motion of Run 4, uÄ , as a

function of t on three horizontal planes: z � 1:52 (solid line), z � 0:89

(dashed line), and z � 0:44 (dot-dashed line). The straight lines are

exponential functions that have been fitted for the interval 0 , t , 5:5T0:

The e-folding time-scales of the exponentials starting from the top are

640T0, 4 700T0 and 2 800T0, respectively.

Figure 15. The density krl (top) and internal energy kel (bottom) as

functions of z at the start of the two-dimensional simulation (solid line) and

after 8.97 orbital periods (dashed line).

Figure 14. kuÄ2lV (top) and ku2z lV (bottom) for a two-dimensional

simulation of parametric decay. The decay of the epicyclic motion excites

a vertical motion.
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as in the previous three-dimensional simulations, but we are now

using 128 � 255 grid points. The initial state is a stratified

Keplerian accretion disc to which we have added a radial motion

with amplitude 0.095, and a small random perturbation of the

pressure. Initially the amplitude of the epicyclic motion, uÄ , is

constant, but the damping sets in suddenly after five orbital

periods (Fig. 14). Over four orbital periods the amplitude of the

epicyclic motion decreases by 30 per cent, after which the

damping becomes weaker again. This is clearly not an exponential

damping. At the same time as the epicyclic motion is damped, the

vertical velocity starts to grow. The inertial waves themselves are

not capable of transporting mass, but the parametric decay heats

the central part of the disc, and the corresponding pressure

increase pushes matter away from the mid-plane (Fig. 15).

The same parametric decay may be found in Run 4 (Fig. 13),

which is done on the same grid as Run 3, but starting from a

laminar state with only the epicyclic shear flow. In Run 3 the

parametric decay occurs between orbits 58 and 60 (Fig. 16), but it

is followed by an exponential damping caused by the turbulence

itself (Fig. 7). The damping rate for Run 3 as estimated in Section

3.2 is based on a time interval after the end of the episode of

parametric decay, and therefore represents the turbulent damping

rate. Also, in Runs 3 and 4 we find an enhanced heating of the

central regions of the disc and a resulting density reduction

(Fig. 17).

4.2 Application to warped accretion discs

We now investigate the implications of our results for the large-

scale dynamics of a warped accretion disc. In linear theory we

may estimate the amplitude of the epicyclic motion as (cf.

equation 18)

u0

cs
,

A

av

; �30�

where A is the dimensionless amplitude of the warp. This estimate

is valid for a thin and sufficiently viscous disc, that is for H=r &
av ! 1 (Papaloizou & Pringle 1983). For observable warps in

which A exceeds the aspect ratio of the disc, the epicyclic

velocities are comparable to, or greater than, the sound speed, as is

the case in our numerical simulations. Based on the high

velocities, one might expect shocks to appear in the simulations,

and shocks do appear in some global simulations that allow

horizontal gradients in the epicyclic velocity (cf. Nelson &

Papaloizou 1999). However, because of the local nature of our

model we do not find any such gradients or shocks.

The large-scale dynamics of a warped disc has been formulated

by Pringle (1992) in terms of two effective kinematic viscosity

coefficients: n1 describes the radial transport of the component of

the angular momentum vector parallel to the tilt vector, while n2

describes the transport of the perpendicular components. The

relation between n1 and n2 and a is non-trivial but has been

explained by Papaloizou & Pringle (1983) and Ogilvie (1999).

Recall that ah and av are effective viscosity parameters that

represent the transport of momentum by turbulent motions (and

magnetic fields) on scales small compared to H. Now n1 / ah as

expected, because the parallel component of angular momentum is

transported mainly by these small-scale motions and magnetic

fields. However, n2 / a21
v instead of the intuitive result n2 / av:

(Here we assume H=r & av ! 1:� This is because the perpendi-

cular components of angular momentum are transported mainly by

the systematic epicyclic motions induced by the warp, and these

are proportional to a21
v as explained in Section 2.3. In effect, n2 is

an effective viscosity coefficient removed by an additional level

from the turbulent scales. If we generalize the linear theory of

Papaloizou & Pringle (1983) to allow for an anisotropic small-

scale effective viscosity, we obtain n2=n1 � 1=�2ahav�:
The condition for a warp to appear in the accretion disc is set by

the balance between the torque that is exciting the warp and the

viscous torque, described by n2, that is flattening the disc. The

warp-exciting torque may for instance be a radiation torque from

the central radiation source. Assuming that accretion is respon-

sible for all the radiation, the radiation torque will depend on the

viscosity n1. The criterion for the warp to appear will then depend

on the ratio of viscosities h � n2=n1: Pringle (1996) showed that

Figure 16. kuÄ2lV (top) and ku2z lV (bottom) for Run 3.

Figure 17. The density kr l (top) and internal energy kel (bottom) as

functions of z for Run 3 at t � 55:8 (solid line) and t � 60:9 (dashed line)

orbital periods.
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an irradiation-driven warp will appear at radii

r *
2
���

2
p

ph

e

 !2

RSch; �31�

where RSch is the Schwarzschild radius, and e � L= _Mc2 is the

efficiency of the accretion process. We have shown that ah <

av ! 1: However, we emphasize again that this does not imply

that h < 1; on the contrary, we estimate that h < 1=�2ahav� @ 1:
The high value for h will make it difficult for a warp to appear

unless the radiation torque can be amplified by an additional

physical mechanism. One way to produce a stronger torque is if

the irradiation is driving an outflow from the disc (cf. Schandl &

Meyer 1994).

A similar damping mechanism may affect waves excited by

Lense±Thirring precession in the inner part of the accretion disc

around a spinning black hole. Numerical calculations by Markovic

& Lamb (1998) and Armitage & Natarajan (1999) show that these

waves are damped rapidly unless n2 ! n1; which we find is not the
case. (However, we note that the resonant enhancement of n2 will

be reduced near the innermost stable circular orbit, because the

epicyclic frequency deviates substantially from the orbital

frequency). Likewise a high value of n2 will lead to a rapid

alignment of the angular momentum vectors of a black hole and

its surrounding accretion disc (cf. Natarajan & Pringle 1998).

Some caution should be exercised when interpreting the results

of this paper. Although the shearing box simulations in general

have been successful in demonstrating the appearance of

turbulence with the right properties for driving accretion, they

are in general producing uncomfortably low values of ah to

describe, e.g., outbursting dwarf nova discs (see Cannizzo,

Wheeler & Polidan 1986). An underestimate of ah and av

would lead to an overestimate of h . In addition, the parametric

instability leads to an enhanced damping of the epicyclic motion.

If this effect had been sustained it would have resulted in a smaller

value for h. In a warped accretion disc, the epicyclic motion is

driven by the pressure gradients, which may maintain the

velocities at a sufficient level for the parametric instability to

operate continuously. To address this question we intend to study

forced oscillations in a future paper.

4.3 The vertical structure of the accretion disc

Our previous simulations of turbulence in a Keplerian shearing

box have shown that the turbulent xy stresses are approximately

constant with height (Brandenburg et al. 1996) rather than

proportional to the pressure as may have been expected from

the a -prescription (Shakura & Sunyaev 1973). We modified the

vertical boundary conditions for this paper and added an epicyclic

motion. However, the kBxByl stress is still approximately

independent of z or even increasing with |z| for jzj , H; while
at larger |z| we may see the effects of the boundary conditions

(Fig. 18). The effect of the epicyclic motion is seemingly to limit

the kBxByl stress in the surface layers to its value in the interior of

the disc. The fact that the stresses decrease more slowly with fzf

than does the density results in a strong heating of the surface

layers.

5 CONCLUSIONS

In this paper we have studied how the turbulence in an accretion

disc will damp an epicyclic motion, the amplitude of which

depends on the vertical coordinate z in the accretion disc. Such a

motion could be set up by a warp in the accretion disc (Papaloizou

& Pringle 1983). We find that the typical damping time-scale of

the epicyclic motion is about 25 orbital periods, which corre-

sponds to av � 0:006: This value is comparable to the traditional

estimate of ah that one gets from comparing the kruxuy 2 BxByl

stress with the pressure. Both alphas are of the order of 0.01,

which implies that the time-scale for damping a warp in the

accretion disc is much shorter than the usual viscous time-scale.

That the two alphas are within a factor of a few of each other is

surprising, since the damping of the epicyclic motion may be

attributed to the Reynolds stresses, while the accretion is mostly

driven by the Maxwell stress.

However, not all of the damping can be described as a simple

viscous damping. At high amplitudes the epicyclic motion may

also decay parametrically to inertial waves. The damping is much

more efficient in the presence of this mechanism.
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