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ABSTRACT

The drag force experienced by a gravitational body moving in a straight-line trajectory through a homogeneous
isothermal gaseous medium of given sound speed is investigated numerically. For perturbers with constant velocity,
linear theory describes successfully the temporal evolution and magnitude of the force. The result obtained
recently by E. Ostriker—that for Mach numbers –2 the force is stronger in a gaseous medium than in aM 5 1
collisionless medium, as described by the standard Chandrasekhar formula—is confirmed. The corresponding
minimum impact radius rmin for a body described with a Plummer model with core radius Rsoft is r /R ≈min soft

. When , the drag force is strongly suppressed, which is consistent with Ostriker’s results but in2.25 M ! 1
disagreement with the Chandrasekhar formula. However, when the perturber is decelerated by its own wake to

, the effective drag force remains initially somewhat larger than the value in the case of constant velocityM ! 1
because it takes some time to get rid of the wake that was generated during its supersonic history.

Subject headings: galaxies: kinematics and dynamics — galaxies: star clusters — hydrodynamics — waves

1. INTRODUCTION

The Chandrasekhar dynamical friction formula, although
simple, provides an accurate estimate of the drag experienced
by a perturber moving in a stellar system. The variety of ap-
proximations introduced by Chandrasekhar (1943) has been
widely discussed in the literature (e.g., Binney & Tremaine
1987).

The hydrodynamical friction, i.e., the gravitational interac-
tion of a massive object with its own wake in a (homogeneous)
gaseous medium, can be calculated more easily because of the
closure of the fluid equations with a given equation of state.
It turns out that accurate determinations of the dynamical fric-
tion force in a gaseous medium may shed light also on the
problem of the time evolution of the Coulomb logarithm in a
collisionless background. Also, the fact that for Mach numbers

the gaseous friction force is nonvanishing is an indi-M K 1
cation that the collisionless dynamical friction may be nonzero
even in the absence of background particles slower than the
perturber. Previous theoretical work appears to be inconclusive
(e.g., Zamir 1992).

Recently, Ostriker (1999) has computed the hydrodynamical
friction, for both subsonic and supersonic cases, as the gravi-
tational force between the perturber with constant velocity and
the perturbed density which was calculated in linear pertur-
bation theory. In this approach, the force upon a particle of
mass Mp traveling at velocity ( ) in a medium ofˆ2Vz V 1 0
undisturbed density r0 and sound speed cs is

2 24pG M r 1 1 1 Mp 0F 5 ln 2 M (1)df ( )[ ]2V 2 1 2 M

for and andM { V/c ! 1 t 1 r /(c 2 V )s min s

2 24pG M r 1 Vtp 0 22( )F 5 ln 1 2 M 1 ln (2)df ( )[ ]2V 2 rmin

for and . The perturber is assumed toM 1 1 t 1 r /(V 2 c )min s

be formed at . The minimum radius rmin is adopted int 5 0

order to regularize the divergence of the gravitational potential
of a point mass.

Interestingly, Ostriker concludes that the drag is more effi-
cient in a gaseous medium by a factor 2–4 than the friction
given by the classical Chandrasekhar formula provided M 5

–2 and also that the drag is nonvanishing when . The1 M ! 1
relatively stronger friction in the gaseous supersonic case may
have relevant consequences in different scenarios such as the
rate of orbital decay of globular clusters and primordial black
holes toward the centers of galaxies, the relaxation of stellar
protoclusters (see also Gorti & Bhatt 1996 and Saiyadpour,
Deiss, & Kegel 1997), or the migration of protoplanets. She
points out that perturbers moving at speeds near res-M 5 1
onantly interact with the pressure waves that they launch in
the medium. The inclusion of any possible resonance is crucial
for an accurate determination of the dynamical friction force.
One could argue that this enhancement of the computed force
might be an artifact of the linearized fluid equations being
unable to capture the surroundings of the Mach cone which
have . These surroundings might give a nonnegligibler ! r0

contribution to the gravitational drag force when integrating
over the whole volume. Our aim is to solve the nonlinear
equations in order to capture properly both effects. We shall
see that the second effect is unimportant. In addition, we in-
clude the back-reaction of the background onto the motion of
the object. In fact, in many cases of interest, a perturber may
suffer an appreciable deceleration and therefore it can no longer
be assumed to be moving at constant velocity; instead, it may
rapidly shift, for instance, from the supersonic regime to the
subsonic one for which the hydrodynamical friction force is
strongly suppressed.

2. ESTIMATING THE GRAVITATIONAL DRAG:
NUMERICAL RESULTS

We present here numerical simulations of the disturbances
produced in the gas by a gravitational perturber. The first aim
is to obtain the force of dynamical friction as a function of

and t. Although the far-field contribution to friction is limitedM
by the finiteness of the domain of the simulation, we are able
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TABLE 1
Resolution

M Lz, min Lz, max LR, max NR Nz

n/(dxcs)
(#1022)

F /Fdf 0

at t 5 1.5

0.3 . . . . . . . . 23700 3700 3700 200 400 4.2 0.106
0.75 . . . . . . . 23700 3700 3700 200 400 4.2 0.398
0.9 . . . . . . . . 23700 3700 3700 200 400 4.2 0.709
1.0 . . . . . . . . 23700 3700 3700 500 700 21.0 1.542
1.05 . . . . . . . 23700 3700 3700 500 700 21.0 2.110
1.12 . . . . . . . 21000 3700 3700 200 400 4.9 2.277

23700 3700 3700 200 400 4.2 2.265
23700 3700 3700 200 400 1.0 2.272
21000 3700 3700 300 600 7.4 2.278

1.12a . . . . . . 23700 3700 3700 200 400 4.2 2.280
1.3 . . . . . . . . 22300 6000 3700 200 400 4.2 1.997
2.0 . . . . . . . . 21150 7500 3700 200 600 4.2 0.969

21150 7500 3700 400 800 8.4 0.970
2.0a . . . . . . . 21150 7500 3700 200 600 4.2 0.979

Note.—The body is localized at ( , ); dx is the mesh width atR 5 0 z 5 0
the origin, and .2 2 2F 5 4pG M r /c0 p 0 s

a Numerical experiment in linear theory.

to compare the numerical gravitational wake with that predicted
by the linearized fluid equations.

For the sake of simplicity, we adopt an isothermal gas, i.e.,
. Using an explicit code that is sixth order in space2P 5 c rs

and third order in time, we solve numerically the continuity
and Euler equations for an isothermal compressible gas:

­r
1 = · (rv) 5 0, (3)

­t

­v 1
1 (v · =)v 5 2 =P 2 =f , (4)p

­t r

where is the gravitational potential generated byf (Fr 2 X(t)F)p

the perturber at the position . For numerical purposes, anX(t)
artificial viscosity term has been introduced in the mo-2n∇ v
mentum equations. Because of the axial symmetry of the prob-
lem, we may use cylindrical coordinates (R, z) with R the usual
cylindrical radius.

We consider a finite domain of size andR P [0, L ]R, max

with open boundary conditions forz P [L , L ] z 5z, min z, max

, , and . The size of the domain wasL z 5 L R 5 Lz, min z, max R

taken large enough to ensure that the perturbed density does
not leave the box (see Table 1). In addition, a nonuniform mesh
was implemented to optimize resolution near the origin.

The gravitational potential produced by the perturber was
smoothed at short distances with a softening radius Rsoft, fol-
lowing a Plummer model, . The in-2 2 1/2f 5 2GM / (r 1 R )p p soft

troduction of a smoothed potential contributes to regularizing
the singularity of the density in the Mach cone. For this reason
one expects a slight dependence of rmin on . The relationM
between rmin and Rsoft will be determined empirically. In all the
experiments considered below, Rsoft was taken to be at least
20 times larger than the accretion radius , a2R { 2GM /Vac p

condition that prevents the generation of a gravitational shock.
Runs with were carried out, but the value of theR 1 Rac soft

dynamical friction was not significantly effected by that.
The drag force on the body was calculated from the density

distribution

3F 5 r=f d r (5)df E p

and also from the total momentum transmitted to the fluid per
unit time. The agreement between them provides a test of the
consistency of the results. In the next subsection the dynamical
friction force Fdf(t) is computed assuming a constant velocity
of the perturber, i.e., . Any resonant effect orX(t) 5 X 1 Vt0

nonlinear signature should be fully captured in our simulations.

2.1. Drag Force for Constant-Velocity Perturbers

Gas density profiles and velocity fields are presented in Fig-
ure 1 for three cases: subsonic ( ), transonic (M 5 0.3 M 5

), and supersonic ( ) at . The length and ve-1.0 M 5 1.4 t 5 1.5
locity units are such that and . In these2M R 5 1 c 5 1000ac s

units, the adopted value for the softening radius was R 5soft

. The number of grid points in the radial and vertical direc-20
tion, NR and Nz respectively, are given in Table 1. We see from
Figure 2 that the dynamical friction force saturates very quickly
for subsonic perturbers, but increases with time for supersonic
ones, in good agreement with the linear hydrodynamic theory.
From Figure 3, it is apparent that good fits for the supersonic

runs correspond to identifying the minimum radius adopted in
the linear theory as . This value may be com-r . 2.25Rmin soft

pared with the inferred one in stellar systems (White 1976).
For the potential described by a Plummer model, the mini-
mum stellar radius according to White (1976) is

, which differs somewhat from the∗ Îr . eR . 1.65Rmin soft soft

value of rmin for a gaseous medium obtained here numerically.
For the subsonic cases, for which the linear theory predicts a
time-independent force, the time evolution is fitted well by a
function of the form , where .F [1 2 exp (2t/t )] t ≈ 0.06` sub sub

In Figure 4 the value of the dynamical drag force obtained
in our simulations at is plotted as symbols versus Macht 5 tmax

number, where tmax is the time of the run. The strongest average
force occurs when the body is moving at . The con-M . 1.12
tinuous line, which corresponds to the curve predicted by linear
analysis with , matches the data reasonably well.r 5 2.25Rmin soft

We find only a weak dependence of the results on the numerical
resolution (!0.6%), extent of the computational domain
(!0.5%), and the value of the numerical viscosity (!0.3%). The
largest dependence (.1%) results if we artificially omit the
nonlinear terms in the numerical solution. The good agreement
between linear theory and numerical results is a confirmation
that the gas dynamics is well described by the linear approx-
imation in the regions in which most of the contribution to
dynamical friction come from. The small deviations suggest a
slight dependence of rmin on the Mach number, as discussed
above.

2.2. Drag Force for Decelerating Perturbers

Dynamical friction becomes of great interest for times long
enough such that the perturber changes appreciably its orbital
energy. Here we only consider a perturber moving freely in a
straight-line orbit. Let us ask the question, How long does a
perturber take to decrease its velocity to half its initial velocity?
For perturbers with initial –2, it is far from clear whetherM 5 1
the average force is more effective in a gaseous medium than
that obtained by applying the plain Chandrasekhar formula. In
Figure 5 we plot the velocity of the perturber with time for
both situations. The unperturbed gas density has been chosen
large enough to have significant drag in the period of the run
of the simulation. Although r0 is then extremely large to be
representative of any astrophysical scenario and also the as-
sumption of negligible self-gravity would be no longer valid,



No. 1, 1999 SÁNCHEZ-SALCEDO & BRANDENBURG L37

Fig. 2.—Time evolution of the force for constant-velocity perturbers

Fig. 3.—Comparison of the force obtained by numerical simulation with
that predicted by linear theory with for different values of .r 5 45 M 1 1min

The values on the abscissa have been normalized to the maximum. The di-
agonal is shown as a solid line and .2 2 2F 5 4pG M r /c0 p 0 s

Fig. 1.—Gray-scale plot of together with velocity vectors for threeln (r/r )0

different values of .M

it illustrates properly the behavior of the drag experienced by
the perturber. In order to compare with the values given by
Chandrasekhar’s formula, the Coulomb logarithm was assumed
to be time-independent, as widely used in many different sce-
narios, with a value .ln L 5 ln (r /r ) ∼ ln (c t /2R )max min s max soft

For initial Mach numbers less than ∼1.2 the friction force drops
strongly after , and consequently the Chandrasekhar for-M 5 1
mula overestimates the friction. If the Mach number is larger
than 1.4, the Chandrasekhar formula underestimates the grav-
itational drag, but not dramatically (see Fig. 5). These argu-
ments cannot be extended to perturbers subject to an external
force. From Figure 5 we see that, for , the velocity ofM 1 1
the body is well described by integrating the force according
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Fig. 4.—Gravitational drag force at vs. Mach number. The numericalt 5 1.5
results are plotted with symbols. The curves correspond to the predictions by
the linear theory (Ostriker 1999) for different values of rmin.

Fig. 5.—Deceleration of the body in a medium with no external forces
(continuous line). For comparison, the time dependence of the perturber ve-
locity by using the Chandrasekhar formula is also shown (dashed line) and
by using the force in linear theory and eq. (6) (dotted line).

to the equation

dM F (M, t)df5 2 . (6)
dt cs

However, for the actual deceleration is much larger thanM ! 1
that obtained from equation (6). This is because of the memory
of the wake behind the body. Its omission becomes most im-
portant just after passing the maximum in Fdf near M ≈ 1.1
(see Fig. 4).

3. CONCLUSIONS

As stressed by Ostriker (1999), the relatively stronger friction
in the gaseous case may have relevant consequences in different

scenarios (see also § 1). Here we have solved numerically the
hydrodynamical equations including self-consistently the de-
celeration of the body. The main conclusion is that the linear
approximation is reasonably accurate and may be applied suc-
cessfully in future works for estimating the dynamical friction
force. The expression for the force is also valid even if the
radius of the perturber is smaller than the accretion radius.
However, when passing through , a decelerating bodyM ≈ 1.1
experiences an enhanced drag force due to a memory effect.
This is because it takes some time for the body to get rid
of the strong gravitational wake that has grown during the
supersonic history.
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