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ABSTRACT

Using simulations of slowly rotating stratified turbulepeee show that thex effect responsible for the
generation of astrophysical magnetic fields is proporiitmthe logarithmic gradient of kinetic energy density
rather than that of momentum, as was previously thoughs fEsult is in agreement with a new analytic theory
developed in this paper for large Reynolds numbers. Thuesctmtribution of density stratification is less
important than that of turbulent velocity. Theeffect and other turbulent transport coefficients are datezd
by means of the test-field method. In addition to forced tlahce, we also investigate supernova-driven
turbulence and stellar convection. In some cases (intaateerbtation rate for forced turbulence, convection
with intermediate temperature stratification, and superdriven turbulence) we find that the contribution of
density stratification might be even less important thargested by the analytic theory.

Subject headinggnagnetohydrodynamics (MHD) — Sun: dynamo — turbulence

1. INTRODUCTION lows one to determine all the relevant turbulent transpeit ¢

Turbulent dynamos occur in many astrophysical situations, effiCients in the expression for the mean electromotiveeforc
They tend to develop large-scale magnetic structures icespa without the restrictions of some of the analytic approaches

and time that are generally understood in terms of mean-fieldSUch as the quasi-linear approach, the path-integral appro
dynamo theory (e.g. Moffatt 1978; Parker 1979; Krause & ©F ther approach. With the test-field method one solves sets

Radler 1980 Zeldovich et al. 1983: Ruzmaikin et al. 1988: ©f equations for the small-scale fields resulting from défe

Rudiger & Hollerbach 2004; Brandenburg & Subramanian Prescribed mean fields — the test fields. These equations re-
2005). Central to this thec;ry is the effect. which is a  Semble the usual induction equation, except that they gonta

oI s ; dditional inhomogeneous term.
pseudo-scalar multiplying the mean magnetic field to give a &M ¢ nom( .
contribution to the mean electromotive force. Such a pseudo , 1 1iS method is quite powerful because it has been shown to
scalar can be the result of rotatio, combined with strat- be rather accurate and it gives not only the tensor coeffiien

ification of density and/or turbulence intensity; and/or ~ ©f @ effect and turbulent diffusivity, but it also allows the
Viuyms, respectively. Herep is the mean gas density and scale-dependence to be determined, which means that these

= a2 s th | fthe turbulent veloci coefficients are actually integral kernels that allow tHeas
“f{rl_l;]— ("r‘] ) bIS € rms vg uec; el ur uterclj_ve ocmy,t_ ___of neighboring points in space and time to be taken into ac-
ere have been a number of analytic studies quantitying o+~ For details regarding scale separation, see Branden

the effects of rotating stratified turbulence on the mean-ele bur
; b o ; . g et al. (2008) and Hubbard & Brandenburg (2009). We
tromotive force (Krause & Bdler 1980; Kichatinov 1991, 5o this method to numerical simulations of forced turbu-

Rudiger & Kichatinov 1993; Kitchatinov et al. 1994;a&ler | : . : ;

X : y . ¢ . lence in a stably stratified layer in the presence of rotation
et al.fzoog, Kl'eeo?r? & Rog."’I‘.CheVSk” 2003)5 In parhcu?r, Id and a prescribed vertical dependence of the turbulence-inte
was found, using the quasi-linear approach (or second-or esity. We also use test-field method in simulations of turbule

correlation approximation), that the diagonal componefits .., e ction and supernova-driven turbulence of the iretast
thea tensor for slow rotation rate (or small Coriolis numbers) medium (ISM)

are given by (Steenbeck et al. 1966; Krause &dfer 1980) The goal of the present paper is to determine the correct
scaling of thex effect with mean density and rms velocity for
slow rotation, i.e., when the Coriolis numb@» = 2Qr is
much less than unity, and large Reynolds numbers. In addi-

a 7£?¥Q -V ln(purms)a (1)

wherel, = Tourms IS a relevant length scale ang is the ;0% the narametef,,, we determine the exponentin the
characteristic turbulent time related to the turnover time diagonal components of thetensor

In the solar convective zone the mean fluid dengity 9 P '
changes by seven orders of magnitudes, while the turbulent a=—L2Q - V105" trms)- 2)
kinetic energypu? ~ 1pul,, changes by only three or- . o
ders of magnitudes and, according to mixing length theory SUch an ansatz was also made bydiger & Kichatinov
(Vitense 1953)u3,,. would be approximately constant in ~ (1993), who found that in the high conductivity limit, =
the solar convective zone. This issue has become timely, be3/2 for slow rotation and> = 1 for rapid rotation. How-
cause there is a new numerical technique that allows the dif-ver, as we will show in this paper, both numerically (for
ferent proposals to be examined with sufficient accurace Th forced turbulence and for turbulent convection with stremg

so-called test-field method (Schrinner et al. 2005, 2007) al temperature stratification and overshoot layer) as welhas a
Iytically, our results for slow rotation and large fluid an&ga

Electronic address: (Revision: 1.145 ) netic Reynolds numbers are consistent with: 1/2. In some
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simulations we also found = 1/3. Q. This allows us to obtain th@ dependence of the effect.
In these derivations we only take into account effects that a
2. THEORETICAL PREDICTIONS linear in bothA and$2, whereA = —V Inp.

We consider the kinematic problem, i.e., we neglect the To exclude the pressure term from Equation (3) we take
feedback of the magnetic field on the turbulent fluid flow. twice the curl of the momentum equation written in the new
We use a mean field approach whereby velocity, pressure andfariables. The equations which follow from Equations (3)
magnetic field are separated into mean and fluctuating partsand (4), are given by:

Unlike in earlier derivations, and to maintain maximum gen- P )
erality, we allow the characteristic scales of the mean fluid > [V(A) A-V) - (V(A)) V] =9 (Q . V(A))

density,p, the turbulent kinetic energy pu?2, and the vari- 9

ations ofpu?, to be different. We also assume vanishing % (V(M % V) ) (Q % V(M) (V(M . V) :

mean motion. The strategy of our analytic derivation is to \

determine the? dependencies of the second moments for +N(V) (8)

the velocityu, (¢, ) u; (¢, ) and for the cross-helicity tensor b —

—_ - ’ @) _ B v

bi(t, ) u;(t,z), whereb are fluctuations of magnetic field ot (H v ) v (V v ) H

produced by tangling of the large-scale field. To this end we A .

use the equations for fluctuations of velocity and magnetic +(20 1) (V( . V) H + N(b), ()

field in rotating turbulence, which are obtained by subtract .

equations for the mean fields from the corresponding equa-where VY = V¥ + ¢A.  Furthermore, N (V) =

tions for the instantaneous (mean plus fluctuations) fields. vy (Vx/\/( )) is the nonlinear term. We consider two
2.1. Governing equations cases: (i) low Mach numbers, where the fluid velocity fluc-

tuationsV satisfy the equatiolVV -V = (1 — o)(V - A) in
the anelastic approximation, and (ii) fluid flow with arbitra
Mach numbers, where velocity fluctuations satisfy to stashda

The equations for the fluctuations of velocity and magnetic
fields are given by

@ &2 vl ( ) 3) continuity equation. To derive Equation (8) we use the ident
ot 7 ties given in Appendix A.

% =(B-Vu—(u-V)B—-B(V-u)+N(b), (4 2.3. Two-scale approach _

o' ~ We apply the two-scale approach, e.g., a correlation func-
=V () =V (ou), (5)  tion,

where Equation (3) is written in the reference frame rotatin =~ V;(z)V;(y) = // dky dko Vi(k1)Vj(k2) exp{i(ki-x
with constant angular velocit$2. We consider an isothermal

equation of statey = ¢2p, so that the density scale height is o)} — // Ak dE fo (k. K or 1 iK-R
then constant. Here, = const is the sound speed is the thay)} , Jia (e, K expliker + )

mean magnetic fielch andp are the instantaneous fluid pres- )
sure and density, respectively. The terfi$u) and AV(b), = / dk fij(k, R) exp(ik-r),
which include nonlinear and molecular viscous and dissipa- )
tive terms, are given by (see, e.g., Roberts & Soward 1975). Hereafter we omit the ar-
- I gumentt in the correlation functionsf;; (k, R) = L(V;; V;),
N(u)=(u-V)u—(u-Viu+ f,(u), (6)  where
N(b)=V b—uxb—nV xb), 7 .
(b) x (ux ux nV xb) ™ L(a;c):/a(k+%K)c(—k:—i—%K)exp(iK-R)dK
wherepf, (u) is the molecular viscous force ands the mag-
netic diffusion due to the electrical conductivity of theidlu and we have introduced the new variabRs= 1(z + y)
2.2. The derivation procedure r=x—y, K =ki+ky k= ;(k —ky). The variables®

. - ., and K correspond to large scales whiteand k correspond

_To study rotating turbulence we perform derivations which , gma| scales. This implies that we assume that theresexist

mc_lude the followmg steps: __ o a separation of scales, i.e., the maximum scale of turbulent
(i) use new variablegV, H) and perform derivations motions{, is much smaller than the characteristic schlg

Wh|Ch inClUde the ﬂUCtUati(mS Ofiescaled Velodfy: ﬁo u Of inhomogeneity of the mean magnetic f|e|d
and the mean magnetic fied = B/7p7;
(i) derive equations for the second moments of the veloc- 2.4. Equations for the second moments
ity fluctuationsV; V; and the cross-helicity tensér V; in k Using Equations (8) and (9) written ink space
space, we derive equations for the following correlation func-

(iii) apply the spectral closure, e.g., the speciralpprox- o = - - -
imation (Pouquet et al. 1976; Kieeorin et al. 1990) for large 1ONS: Jfij(k, K) = Vi(t, k1)V;(t. k2) and g;;(k, K) =
fluid and magnetic Reynolds numbers and solve the derivedb: (. k1)V;(¢, k2). The equations for these correlation func-
second-moment equationsArspace; tions are given by

(iv) return to physical space to obtain formulae for the Ofii i
Reynolds stress and the cross-helicity tensor as functbns ;J =-2Q [aipq ol qu + €jpgA p, fzq 2

<5jlqk fin



—€ilgkqfnj + 5nqupl(kjf’iq - kiqu))]

+If + N fij, (10)
dgi; i\n
ait‘] = —QQZ [E(quA;l)giq + ﬁ (Ejlqkqgin
+kenqupljgiq)] +1 (A(l ) fii = Hixnfnj
+I§’j +Ng¢j, (11)

wherek;; = k;k;/k?, AV = k; — ioX, and similarly for
A AL = ADAD /(AD)2, and similarly forA{2,. The
source termsl'fj and Iigj in Equations (10) and (11) contain
large-scale spatial derivatives &, which describe the con-
tributions to turbulent diffusion[(f andI{; are given by Equa-
tions (A4) and (A6) in Rogachevskii & Kleeorin (2004)). The

terms\ f;; and N g;; are related to the third-order moments
that are due to the nonlinear terms and are given by

N fij = Pin (MD)W Vi (K )]V (K2)
+Vi(k) P (AN Vi (K2)],
Ngij =N bi(k)]V;(k2) + bi (k1) P (AN
whereP;;(A) = d;; — A;; andA = k —io .

Vin (k2)],

2.5. T-approach

The equations for the second-order moments contain highe
order moments and a closure problem arises (Orszag 1970;

Monin & Yaglom 1975; McComb 1990). We apply the
spectralT approximation or the third-order closure proce-

dure (Pouquet et al. 1976; Kleeorin et al. 1990; Rogachevski

& Kleeorin 2004). The spectrat approximation postulates
that the deviations of the third-order-moment teri(s;; (k),

from the contributions to these terms afforded by the back-

ground turbulenceNfi(]Q)(k), are expressed through similar

deviations of the second momenfs; (k) — fi(;’)(k), ie.,
» ) (L
Nfij(k) = N (k) = "w . (12)

and similarly for the tensaNg;;. Here the superscrigD)
corresponds to the background turbulence (i.e., noningtat
turbulence with a zero mean magnetic field) k) is the char-
acteristic relaxation time of the statistical moments,chidan

be identified with the correlation time(k) of the turbulent
velocity field for large Reynolds numbers. We also take into
account thayf?)(kz) = 0. We apply ther-approximation (12)
only to study the deviations from the background turbulence
The statistical properties of the background turbuleneeaar
sumed to be known (see below). A justification for thap-
proximation in different situations has been obtainedugto
numerical simulations and analytical studies (see, emgnB
denburg & Subramanian 2005; Rogachevskii et al. 2011).

2.6. Model for the background compressible turbulence
We use the following model for the background turbulence:

0
1y

EVi(O)(kl) Vj(o)(kz) _ {Agl)AEQ) — 0y AL A

i (kg = Agks) + e [Fi s + £ (kV

7;%%)} }M%W+ O(2)\?), (13)
where
MCZ(V-U)Q/(VXU)2<1 (14)

is the degree of compressibility of the turbulent velocigldi

the termsx . take into account finite Mach numbers com-
pressibility effects; (k) = 2707(k), E(k) = —d7(k)/dk,
7(k) (k/ko)'74, 1 < ¢q < 3 is the exponent of the
spectrum function(gq 5/3 for Kolmogorov spectrum),

ko = 651, ly is the maximum scale of turbulent motions,
anduy is the characteristic turbulent velocity at scéle The
motion in the background turbulence is assumed to be non-
helical. For low Mach numbersu{ < 1), Equation (13)
satisfies to the conditiorW - V = (1 — o)(V - A).

2.7. Contributions to they effect caused by rotation

Since our goal is to determine theeffect, we solve Equa-
tions (10) and (11) neglecting the sourdg} and Ifj with

large-scale spatial derivatives &f. We subtract from Equa-
tions (10) and (11) the corresponding equations written for
the background turbulence, and use the spectagiproxima-
tion. We take into account the effects which are lineaAin
and in©2. We also assume that the characteristic time of vari-
ation of the second moments is substantially larger than the
correlation timer (k) for all turbulence scales. This allows
Us to get a stationary solution for Equations (10) and (14) fo
the second-order moments. Using this solution we determine
the contributions to the mean electromotive force caused by
rotating turbulence:

7TL_€TVLJ’L /b

— 207 % i / dk [3i (A H ) 5005 11}

dk = Emyji /gij (k:) dk

—HiAkp (equ F9 + enpq fé?)) - 3% (k-H)
x (%zqkqfff) + gnqujplfi(;)ﬂ . (15)
After performing the integration ik space, we get:
&= 4% 5 Bi [(inj +Q;V; —46;;Q-V)In V2
+(20 — 1) (N + U — 46,2 )
3 e (Ui — 4N + 6,9 - )\)] . (16)

For low Mach numbersy. < 1) and foro = 1/2, thea
tensor depends only oW In V2, i.e.,

402
15
where we used; = a;;B;, anday; = 1(a;; + aj;) is the

symmetric part ofa;;. Furthermore, the pumping velocity,

Vi = 1€mmamn is independent of rotation for small Coriolis
numbers because the rotational contribution to the pugnpin

(UV; +Q;V; —46,;,Q-V)In V2 (17)

Qij =
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velocity vanishes. In this case the pumping velocity is dete
mined only by the inhomogeneity of turbulent magnetic dif-
fusivity.
For arbitrary Mach numbers and when
L pe
T
the diagonal part of the: effect depends only oV In V2,
ie.,

(18)

1642 —
az—f—ﬁo (Q2-V)InV2. (29)
The latter equation can be rewritten in the following form:
2 2
- —31—?) (Q- V)0 (57 tme) (20)

whereo is determined by Equation (18). In the next section
we will determine the exponentfrom numerical simulations.

3. NUMERICAL SIMULATIONS

We now aim to explore the universality of the derived scal-
ing by comparison with results from very different astroghy
ical environments. To do this, we performed three quite dif-
ferent types of simulations of:

(i) artificially forced turbulence of a rotating stratifiedg

with respect to the total (including shearing) velocity.tte
isothermal case, the pressure is giverpby pc2, while in all
other cases we also solve an energy equation, for example in
terms of the specific entropy = ¢, Inp — ¢, In p, wheregc,
andc, are respectively the specific heats at constant pressure
and constant volume, their ratip = ¢,/c, is chosen to be
5/3, ands obeys

pT%i = —VFraa + pl' — p?A + 20pS?,
where the temperatuf® obeys(c, — ¢,)T = p/p, Frad iS
the radiative flux, and’ is a heating function. In the isother-
mal case, the entropy equation is not used, and the forcing
function f consists of random, white-in-time, plane, non-
polarized waves with a certain average wavenumfber,

The simulations are performed with theedciL CoDE
(http://pencil-code.googlecode.com) which uses sixtten
explicit finite differences in space and a third-order aatarr
time stepping method (Brandenburg & Dobler 2002). The
simulations of supernova-driven turbulence in the ISM have
been performed using thelfVANA-III code (Ziegler 2004)
with explicit viscosity and resistivity.

(23)

3.2. The test-field method
We apply the kinematic test-field method (see, e.g., Schrin-

where the density scale height is constant and the turbellenc ner et al. 2005, 2007; Brandenburg et al. 2008) to determine

is driven by plane wave forcing with a given wavenumber.
(ii) supernova-driven interstellar turbulence in a veatiy-
stratified local Cartesian model employing the shearingtshe
approximation;
(iiii) turbulent convection with and without overshoot lage

all relevant turbulent transport coefficients in the gehesia-
tion

Ei = ijBj +niju Bk, (24)

whereB;, = V;B; is the magnetic gradient tensor. The

The advantage of the first method is that it allows to impose test-field method works with a set of test field ', where

a well-defined vertical gradient of turbulent intensitg, j.of
the rms velocity of the turbulence such thatln ., is ap-
proximately constant over a certaininterval, excluding the
region near the vertical boundaries. Naturally, the pralkic
more complex scenarios (ii) and (iii) are less-well conadl
but allow to demonstrate the existence of theffect scaling
in applications of direct interest to the astrophysical oum
nity. We use different variants of the test-field method tame
sure thex effect (and other turbulent transport coefficients).

3.1. Basic equations

In the following we consider simulations where the turbu-
lence is either driven by a forcing functigfy in which case
we assume an isothermal gas with constant sound speed
it is driven through heating and cooling either by supereova
in the interstellar medium or through convection with hegti
from below. In all cases, we solve the equations for the veloc
ity, U, and the density in the reference frame rotating with
constant angular velocit2 and linear shear rats:

U=—Vp+p(f9 +f+g)+ V- (2vpS),

Pﬁ (21)
dp

wherefo = (2QU,, (S — 2Q)U,,0) is a combined Coriolis
and tidal acceleration for a linear shear flbig = (0, Sz, 0),
v is the kinematic viscosityf is a forcing functiong is grav-
ity, andS;; = 3(V;U; + V;U;) — 30;;V - U is the traceless
rate-of-strain tensor, not to be confused with the shear¥at
andD/Dt = 9/0t+ (U +U ) - V is the advective derivative

the superscripT’ stands for the different test fields. The cor-
responding mean electromotive for@sre ther€”, and are
calculated from€” = u x bT, whereb” = V x a™ with

daT

ot

with U and u taken from the solutions of the momentum
equation. In the case with shear, we repldee’ /ot by
da” /0t+U - Va™ + Sal &. On the top and bottom bound-
aries we assume perfect conductors, and forthedy direc-
tions periodic boundary conditions. These small-scalédiel
are then used to determine the electromotive f@€ecorre-
sponding to the test field3”. The number and form of the
test fields used depends on the problem at hand.

We either use plana:{) averages, which depend only en
andt (hereafter referred to as test-field method I), or, alterna-
tively, we assume that the mean field varies also intlaad
y directions, but that the turbulence is homogeneous in those
two directions, and that thedirection constitutes a preferred
direction of the turbulence (test-field method II). In thenfer
case only the: andy components of are important for dy-
namo action, and the magnetic gradient tensor has only two
non-vanishing components which can be expressed in terms
of the components of the mean current denslty: V x B,
alone. Here and elsewhere, we adopt units for which the mag-
netic permeability is unity. Thus, we have

=U xb" +ux BT + (uxb") +nVia®, (25)

gi = aijEj — nijjja (26)

with ¢ andj being either 1 or 2.



Alternatively, the mean electromotive force is assumed to
be characterized by only one preferred direction which we

describe by the unit vectat. Then, £ can be represented c
in the form S
~ = — — o
E=a,B+(q)—ay)(é-B)e+vyex B ~
_ _ — S
*T]LJ*(UH*T}L)(éwf)éf(SAXJ (27)
—HLK— (HH —Hl)(é-f)é—ué XE
with nine coefficientsay, «, ..., p. Like J = V x B,
alsoK is determined by the gradient tens@B. While J is 1.0F

given by its antisymmetric parf is a vector defined b =
é-(VB)® with (VB)® being the symmetric part & B. For
details of this method, referred to below as test-field meitho

0.5F

/k,Q

I, see Brandenburg et al. (2012). Equation (2) is expeaed t - 0.0 s ..

apply toa;, while ) is know to behave differently and can s _05L

have opposite sign (Brandenburg et al. 1990; Eeeril992; )

Rudiger & Kichatinov 1993). 1.0t ‘ ‘ ‘ ‘ ‘ ]
Errors are estimated by dividing the time series into three _3 _9 1 0 1 5 3

equally long parts and computing time averages for each of
them. The largest departure from the time average computed

over the entire time series represents an estimate of the err
FiG. 1.— Comparison of; (solid) ande (dashed) for the runs with

3.3. Simulations of forced turbulence A(®) = 0.33and 0.61.

We begin by studying forced turbulence. We consider Table 1. As discussed above, this behavior has been seen and
a domain of sizeL, x L, x L. in Cartesian coordinates interpreted in earlier calculations (Brandenburg et abt9

(z,y,z), with periodic boundary conditions in the andy Ferriere 1992; Rdiger & Kichatinov 1993).
directions and stress-free, perfectly conducting bourdaat

top and bottomz = +L,/2. The gravitational acceleration,
g = (0,0,—g), is chosen such that the density scale height ;
H, = c¢%/g is small compared with the vertical extent of the 1.0p
domainL,. The smallest wavenumber that fits into the cu-
bic domain of sizel.? is k; = 27/L, so the density contrast
between bottom and top isp(27) = 535 and the mean den-
sity varies likep = p, exp(—z/H,), wherep, is a constant.

In all cases, we use a scale separation rafigk; = 5, a
fluid Reynolds number Res s /vk; between 60 and 100, E
a magnetic Prandtl number r= v/n of unity, ¢s = 1, -1.0F
k1 =1,p, = 1anduy = 1. We use a numerical resolution of _15 F
1283 mesh points for all forced turbulence runs. '

15F

0.5F

0.0F

oy K2/ k0

-0.5F

We perform simulations for different values of the rms ve- 0.0 0.2 0.4 0.6 0.8 1.0
locity gradient, ") = dInu.ys/dz, but fixed logarithmic , . , ,
density gradientlIn p/dz = —\. Thus, we have 0.4F w Cozn.4 1
[ )
= 20\ ( =X /2, 28 [ | ]
ay =20 (o A"/ @ gl e ]
- [ "o 3
i.e., o can be obtained conveniently as the value\6f /A < » ;
for which a vanishes. By arranging the turbulence such that o3 0-0F e
A and)\ are approximately independentxgfthe value ofx S i |
is also approximately constant. In that case, howeverhall t -0.2¢ ! ]
other turbulent transport coefficients arelependent. How- i ‘ o
ever, by normalizingy by u.s/6 and the other coefficients —0.4r ‘ : . ]
by nto(2) = wwms(2)/3ks, we obtain non-dimensional quan- ‘ — ‘ —
tities that are approximately independentzof We denote 0.0 0.2 04 ., 0® 0.8 1.0
the corresponding non-dimensional quantities by a tildd an A

quote in the following their average values over an interval
z1 < z < z, in which these ratios are approximately con- Fic. 2.— Dependence of the normalized mean values pon the value of

stant. A for Co = 0.15 (upper panel) and 0.4 (lower panel), giving respectively
In Figure 1, we plot the normalized profiles @f anda o ~ 1/2 and~ 1/3 as the zeros in each graph.

as functions ofz. Note that there is a limited range where

both functions are approximately constant. R = 0.5, In Figure 2 we plot the dependence of the normalized mean

they are of opposite sign; see the lower panel of Figure 1 andvalues ofa; on the value of\(*) for two values of Co. The
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value of can then be read off as the zero of that graph. We F = 3
find o ~ 1/2 for low values of Co, and a somewhat smaller i '
value ¢ ~ 1/3) for larger values of Co.
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FIG. 4.— Results for the other transport coefficients€.15.

FiG. 3.— Transport coefficients for the run wit*) = 0.61.

In Figure 3 we show the-dependence of the remaining 7
normalized coefficients. They are all approximately indepe
dent ofz within the rangez; < z < 25. In Figure 4 we show 2
the scaling of these turbulent transport coefficients (idiclg
now alsod) with A(*). The results for and~ suggest a
dependence proportional to the gradienp®fu,.,s with Oa
between 0 and 0.3 far| ando, between 0.7 and 1 foy. On s
the other hand, all the other coefficients seem to be indepen-
dent of A and we find3 ~ 5. ~ 1.1, 6 = 0, k| = —0.1,
k1 ~ —0.4, andji = —0.05. These results are quantitatively
and qualitatively in agreement with those of Brandenburg et A

al. (2012). The fact thai turned out to be essentially zero
was addressed earlier (Brandenburg et al. 2012), wheresit wa
found that significant values are only found for scale separa

. . P - FiG. 5.— Time-averaged vertical profile ef;, from ISM turbulence (see
tion ratios around unity, i.e., when the scale of the mead fiel Gressel, Elstner & Rdiger 2011), obtained v?ﬁt’h the TF method (gray line).

is comparable to that of the turbulent eddies. The best-fit model (black line) with = 0.327 is obtained by method of
least squares, weighted with the standard deviation (shads) inog.

gy [kms™']
o

T7=1.90Myr, 0=0.327

red. x*=1.01

3.4. The case of supernova-driven ISM turbulence

We now turn to simulations of supernova-driven ISM tur- a realistic cooling functiod\(7") and heatingI'(z) lead to a
bulence (see Gressel et al. 2008a,b, for a detailed dascript segregation of the system into multiple ISM phases.
of the model), similar to those of Korpi et al. (1999) and Gent Here we solve the visco-resistive compressible MHD equa-
et al. (2012), but extending to larger box sizes, thus alligwi  tions (supplemented by a total energy equation), using the
for better scale separation. In these simulations, expansi NIRVANA-IIl code (Ziegler 2004); for the full set of equa-
waves are driven via localized injection of thermal energy, tions, we refer the reader to Equation (2.1) in Gressel (010
Isn(z, t). Additionally, optically thin radiative cooling with  For the present run, we chose a resolutioh2# x 128 x 512



TABLE 1
BASIC PARAMETERS AND TURBULENT TRANSPORT COEFFICIENTS FORHE FORCED TURBULENCE SIMULATIONS

Rev  Co A a k}/Qki akF/Q%k1 F/mo(2)k1 Bi/mo(z) By/mo(z)  &/mo(z) ki/mo(z)  ky/mo(z)  w/mo(2)

70 014 0.13 047=£0.16 0.1+01 —-0.1+£0.1 1.5+02 21+03 -02£+00 -01+£01 -06+01 -1.84+04
56 0.17 0.25 0.82£0.10 0.7£0.1 0.0£0.1 1.1+£01 1.0+0.1 00£00 —-02£00 -0.7+0.1 -0.1%£0.1
62 0.16 0.33 0.57£0.03 0.5+01 —-0.1+£0.1 1.1£02 12402 00+00 —-01£00 -06+£0.1 —-0.3+0.2
47 020 046 0.3240.26 02+03 —-02+£0.1 1.1+02 10+02 -00£00 -01+£00 -04+00 —-0.140.0
65 0.15 0.61 —0.42=£0.06 0.1+05 —-04+0.0 1.1+01 124+01 -01£01 -01+£01 -04+01 -0.3+0.2
59 0.16 097 —-129+026 —-02+05 —-0.6+0.2 08+03 07+£03 -—-01+00 -014+01 -0.3+0.1 0.1+0.1

108 0.36 0.10 0.20£0.02 —-0.1+£0.1 0.0£0.0 09+£01 16=£0.2 0.1£0.0 01£00 —-05£01 -—-1.6=+0.2
93 041 014 0.12£0.04 -01£0.0 -0.0£0.0 1.0£01 22404 0.0+0.0 01+00 —-03+01 -—-1.7£04
75 051 035 0.30=£0.05 0.3+00 —-02+£0.1 1.0£0.1 08+0.1 00+00 -03£00 -1.1+£0.0 0.240.0
74 052 059 —0.36£0.02 02+01 —-0.7+£0.1 1.2+00 08+00 -03+£01 —-02+£01 -—-09+0.0 0.3£0.0

with u,,5(2) being thez-dependent rms velocity and, (as-
sumed independent a is a characteristic timescale related
to the« effect. We apply a least-square optimization allow-
ing 7, ando as free parameters. The best-fit model according
to Equation (29) is plotted as a black line in Figure 5, along
with the stated values fat, ando, and matches well the data
within the error bars.

Because we canna priori assure that, is uniform in
space, and because this might affect the precise deteramnat
of o, we perform an additional test. We do this by indepen-
dently estimatingy(z) from the two-point velocity correla-
tion function, computed in horizontal slabs around a given
I galactic height, and time averaged over multiple snapshots.
0:5 Yt [5‘?] 25 3.0 By comparing the obtainet)(z) with u,,s(z), we find that

wr LY our data are broadly compatible with a uniforg of about

Fic. 6.— Likelihood map based on the reducedlerror estimate, with the 1.2 Myr. To corroborate the fit, we compute a likelihood map
best-fit parameter set indicated by the cross. in the parameter space spannedhyandcs and find that the

best-fit parameter set is, in fact, located at the global mini
mesh points, and apply a value of)Pr= 2.5. The fluid mum of the reduceg? map; see Figure 6. The best-fit value
Reynolds number, defined as Re wu,ms {o/(27v), varies of 7, is aroundl.9 Myr, which is indeed compatible with the
within the domain and takes values Re 70-165, which is correlation timery.
somewhat larger than for the forced turbulence case, where To conclude this section, we remark that we here find a
ly = 2m/ks. The same applies to the Coriolis number somewhat smaller exponent, ~ 1/3, which suggests that
Co = 207, which is here~ 0.24. this case deviates from the theoretical prediction. It fag-h

Despite the mentioned differences, the basic properties ofever a similar exponent as in our stratified forced turbuenc
the turbulence producing aneffect are in fact quite similar:  simulations with larger values of Co. Note that with the
rotation of the system together with stratification in theame  determined value fof.., Equation (18) predicts a value of
density and turbulence amplitude. Notably, the ISM simula- ¢ ~ 0.62, which is a factor two larger than obtained from
tions are strongly compressible with peak Mach numbers ofthe fit. The reason for such discrepancy between the theoret-

o 7

0510152025
0.8

0.6

exponent o

0.4

0.2

up to ten, corresponding to a typical valuef ~ 1.9, and ical predictions and the simulations of supernova-driv& |
with peak values up to five. We note that the ISM simula- turbulence might be caused by the fact that the theory iddeve
tions also include shear withh = —, which may affect the  oped for simplified conditions which are different from thes
production of vorticity. simulations.

To obtain an estimate far from the time-series of a sin-
gle simulation run, we apply a method distinct from the one 3.5. Convection-driven turbulence
described above: We treat thg,(z) profile (inferred with . . .
test-field method 1) as theatato be modeled and obtain er- _ Many astrophysical bodies have turbulent convection

ror estimates by means of the standard deviation within four ZON€S. Again, rotation and stratification induce helicrijoi
equal sub-intervals in time (see gray line and shaded areadhe flow and therefore drive aneffect. Using mixing length
in Figure 5). We then compute time averages of the profilesth€ory (Vitense 1953), we know that the convective flux is
for VInp andV In u,,s (here without error estimates), from ~ proportional topu® (Brandenburg et al. 2005). In the steady
which we compute anodelprediction fora,,(z) based on  State, the total energy flux is constant in space, so if most of

the expression the flux is carried by convection, them? = const and thus
_ its vertical gradient vanishes. If the scaling of SectioA 3.
Qg = —Totiins 2+ VI (07 trms) (29) i i i.e.qi 3
b9 alrms P Urms) were applicable also to this case, i.e.qifx dInpu;,,/dz,
where we have assumed tiatcan be replaced by thena would vanish.

To investigate this somewhat worrisome possibility, we now
Lo = Tolrms(2) (30) consider a simulation of turbulent convection in a stralifie
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FiG. 7.— Dependence ak on z for convective turbulence without over-
shoot layers (gray line, with shaded areas indicating fat@ns) compared

with Equation (2) (black line / dotted) applying= 0.76 and{, = 0.41d,

as obtained from a least-square fit within the highlightedrival inz/d.
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FiG. 8.— Same as Figure 7, but the case with overshoot layers aak we
temperature stratification, comparing(gray line, shaded areas) measured

via the TF method with Equation (2) (black line / dotted) yiefic = 0.35

and/, = 0.6 d as best-fit values.
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FIG. 9.— Same as Figure 7, but the case with overshoot layers amtjst
temperature stratification, comparing(gray line, shaded areas) with Equa-

tion (2) usinge = 0.48 and{, = 0.56 d (black line / dotted).

layer, heated from below by a constant energy #uxF',.q

at the bottom, where we adopt the diffusion approximation

TABLE 2

SUMMARY OF CONVECTION RUNS

Run Ra Ta Apiotal  Apgy Overshoot Res.
A 13-10% 3.6-10° 64 64 — 2563
B 6.1-105 6.4-10% 37 7 + 1283
C 6.1-10° 6.4-10* 290 296 + 1283

for an optically thick gas withF',,q = —KVT and radia-
tive conductivity K. We either consider a constant value of
x = K/(pcp) with an enhanced turbulent heat conductivity
x: hear the surface as in spherical simulations apa et

al. (2011), or, alternatively, a piecewise constant prdfile),
such thay - Vs is positive in the middle of the domain, which
corresponds to convective instability. The latter setugds
scribed in detail in Kapyla et al. (2009). The hydrostatic equi-
librium value ofg-V s is proportional to the Rayleigh number,
Ra, which is here arounth®; see Kapyk et al. (2008) for the
definition. The rotational influence is here measured in $erm
of the Taylor number Ta= (2Qd?/v)?, which is 3.6 - 105

for Run A. Summary of our convection simulations is given
in Table 2. Run A without overshoot layers afd - 103 for
Runs B and C. Herd is the thickness of the unstable layer.
The density contrast in the run without overshoot layergis 6
The vertical boundary conditions are stress-free and we use
Pry,y = 0.5 and Rg; = 52 in Run A, and Py, = 1 and
Rey, = 13 in Runs B and C. In Figure 7 we give the results
for Run A without overshoot layers. The Coriolis number
varies with height and is about 0.2 in the middle of the layer.
The rotation axis is anti-parallel to the direction of gtgyi
corresponding thus to a location at the north pole. The sys-
tem is therefore isotropic in they plane and we consequently
quote the mean between the two horizontal components, i.e.,
@ = (az. + ayy), using test-field method I, which corre-
sponés ton; of test-field method Il. Note that in this sim-
ulation, «(z) shows a sinusoidal profile, suggestive of either
weak stratification or effects of boundaries. Given that-den
sity stratification is not small (factor 64), it is plausititeat
the effects of boundaries are here responsible for the é&ten
regime with negativer.

Our simulation shows that the best fit is obtained dor
0.75. A possible reason for this unexpected behavior might
be poorer scale separation in convection simulations com-
pared with forced turbulence simulations. The other possi-
bility is related to the absence of convective overshootigy
discussed above. This idea is partly confirmed by compar-
ing with simulations that include convective overshootlay
Now the best fit value for is found to be about 1/3 when
the temperature stratification is weak (Figure 8) and abut 1
when the temperature stratification is strong (Figure 9).

4. CONCLUSIONS

While the present investigations confirm the old result that
the« effect in mean-field dynamo theory emerges as the com-
bined action of rotation and stratification of either densit
of turbulent intensity, they also now point toward a revisad
the standard formula fak. The old formula by Steenbeck et
al. (1966) predicted that the effect of stratification carsble-

TABLE 3
SUMMARY OF RESULTS FORo.

Co Ap/p o

forced turbulence 0.15 535 1/2
0.40 535 1/3
supernova-driven ISM 0.24 1000 1/3
convective turbulence (CT) 0.2 64 3/4
CT with overshoot 0.2 37 1/3

0.2 290 172
analytic theory 1/2
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from various simulations, it is worth emphasizing that ih al
cases is well below unity. On theoretical grounds, the value
1/2 is to be expected. Except for the forced turbulence simu-
lations that also yield 1/2 for slow rotation, all other caiaee
too complex to expect agreement with our theory that ignores
unity. The idealized case of artificially forced turbuleram for example, inhomogeneities of the density scale heigtt an
most directly be compared to our analytic derivation, silhce finite scale separation.
agrees in all the made assumptions. The obtained value of
o = 1/2 agrees very well with the theoretical expectation. A
similar exponent is found for the case of turbulent conwecti
with higher temperature stratification, but the resultsrsée We acknowledge the NORDITA dynamo programs of 2009
depend sensitively on model parameters (see Table 3). Herand 2011 for providing a stimulating scientific atmosphere.
more detailed studies will be required. Moreover, the tesul Computing resources provided by the Swedish National Allo-
o = 1/2 arises naturally from analytical considerations for cations Committee at the Center for Parallel Computerseat th
large fluid and magnetic Reynolds numbers and slow rotationRoyal Institute of Technology in Stockholm, the High Per-
as the only tenable choice, but those considerations have noformance Computing Center North in Ulneand CSC — IT
yet been performed for the cases of intermediate and rapidCenter for Science in Espoo, Finland. This work was sup-
rotation. ported in part by the European Research Council under the

Forced turbulence simulations show a trend toward smallerAstroDyn Research Project No. 227952 (AB), by COST Ac-
values ofs around 1/3 for faster rotation and also in cases tion MP0806, by the European Research Council under the
of supernova-driven turbulence. Turbulent convectiorhwit Atmospheric Research Project No. 227915, by a grant from
overshoot also gives 1/3 in one case of moderate temperaturéhe Government of the Russian Federation under contract No.
stratification with overshoot, while simulations withoweo- 11.G34.31.0048 (NK,IR), Academy of Finland grants No.
shoot point toward values somewhat larger values around 3/4136189, 140970 (PJK) and 218159, 141017 (MJM), and the
However, in none of the cases we have found thatathed- University of Helsinki ‘Active Suns’ research project. Paf
fect diminishes to zero as a result of a trend toward constantthis work used the NRvANA code version 3.3, developed by
convective flux wherg@u? is approximately constant. Udo Ziegler at the Leibniz-Institutif Astrophysik Potsdam

In spite of the considerable scatter of the values &fund (AIP).

sumed into a dependence on the gradierpgf,s. This for-
mula was then generalized byifiger & Kichatinov (1993) to
a dependence oif u,n,s, Wheres = 3/2 in the high conduc-
tivity limit for slow rotation, ands = 1 for faster rotation. In
contrast, our new results now clearly favor a value dfelow

APPENDIX
A. IDENTITIES USED FOR THE DERIVATION OF BUATION (8)

To derive Equation (8) we use the following identities:

7 [V x (Oxu)], = [VIVPY 6, (V)] v,

(A1)

7 [VxIVx(uxQ)], = [TV - 5, (v)?]

i

X(VXﬂ)j,

(A2)

{VEA)VE'A) — by (V(A))Q] (VxQ); = (@xVWV), (AV)

+(Q-VV) (VI xV)
Equation (A3) is obtained by multiplying the identity

8ij1ﬂQm + Ql (EjmlAim - EimlAjm> = Eiijlela

i

(A3)

(A4)

by AQVj, whereg; ;;, is the fully antisymmetric Levi-Civita tensah,,,, = A, Ay /A?, and the identity (A4) is valid for arbitrary

vectorsQ2 andA.
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